Вселенная

От плоской Земли до квазаров
Главная


Земля


Солнечная система


Звезды


Галактика


Размеры Галактики


Другие галактики


Возраст Земли


Энергия Солнца


Типы звезд


Эволюция звезд


Взрывы звезд


Эволюция галактик


Удаляющиеся галактики


Наблюдаемая Вселенная


Начало Вселенной


Бомбардировка частицами


Фотоны большой энергии


Радиоастрономия


Окраины Вселенной



Межзвездный газ

Жизнь наиболее ярких звезд настолько коротка, что во времена, когда по Земле разгуливали динозавры, их в нынешней форме еще не существовало. В космических масштабах времени они эфемерны.
Но если звезды могли формироваться всего несколько десятков миллионов лет назад, это практически означает, что какие-то звезды возникают и сейчас. Возможно, звезды образуются непрерывно, если не в таких количествах, как в далеком прошлом, когда, вероятно, возникала вся Галактика, то все же достаточно часто. Однако в таком случае не наблюдаем ли мы и теперь звезды в процессе образования?
Дать на это окончательный ответ трудно, так как процесс этот в сравнении с человеческой жизнью настолько длителен (каким бы стремительным ни был он в космических масштабах), что самые подробные наблюдения, проводимые столь недолго, не могут дать ясных результатов. Кроме того, звезду в стадии образования не так то просто увидеть. В некоторых туманностях есть объемы, которые, возможно, являются звездами в процессе образования. В туманности Розетка находится мною темных шарообразных объектов, которые могут быть звездным веществом, сгущающимся перед переходом на главную последовательность. Другие возможные области нынешнего формирования звезд расположены в туманности Ориона и в туманности NGC6611 в созвездии Змеи.
Но из чего могут образовываться новые звезды?
Большинство астрономов считает, что вначале звезды представляют собой огромные облака газа и пыли. Много миллиардов лет назад, в эпоху возникновения Галактики, это звездное сырье, вероятно, имелось в изобилии. Сама галактика, скорее всею, представляла собой колоссальное вращающееся скопление вещества, от которою отрывались отдельные вихри, сгущавшиеся затем в звезды. Ну а теперь, когда из первоначального смерча уже сгустилось более сотни миллиардов звезд, много ли теперь осталось сырья?
Я уже упоминал о существовании межзвездной пыли, которая в некоторых местах скапливается в таких количествах, что заслоняет свет звезд (темная туманность) или же отражает этот свет (светлая туманность). Кроме того, по всему межзвездному пространству также рассеяна пыль, которая повсюду преломляет и ослабляет свет звезд. Этот эффект имеет важное значение, однако он вызывается уже очень небольшим количеством пыли, совершенно недостаточным для образования звезд.
Гораздо важнее существование межзвездного газа Отдельные атомы и молекулы газа поглощают и рассеивают свет довольно слабо, а потому присутствие газа обнаружить намного труднее, чем присутствие пыли, хотя его может быть гораздо больше.
Отдельные атомы газа поглощают световые волны только определенной длины, так же как и атомы в солнечной атмосфере. Концентрация газа в межзвездном пространстве, несомненно, очень низка, поглощение им света на обычных расстояниях, несомненно, ничтожно мало и не поддается измерению. Но на расстоянии в сотни тысяч световых лет накапливающееся поглощение достигает измеримого уровня. Поэтому не исключена возможность, что некоторые линии в звездных спектрах порождаются не газами, непосредственно окружающими звезду, а чрезвычайно разреженным газом, распределенным на всем пути света от звезд к Земле.
Первые сведения об этом были получены при спектроскопическом изучении двойных звезд. Некоторые двойные звезды обращаются вокруг центра тяжести системы в той же или почти в той же плоскости, в которой лежит Земля. Если обе звезды светящиеся, то, поочередно заслоняя друг друга, они почти не влияют на количество достигающего нас света, и в тех случаях, когда такие двойные звезды расположены очень тесно и не различаются в телескоп, обнаружить их бывает трудно.
При таком положении орбит получается, что когда одна звезда удаляется от нас, другая приближается. Затем одна звезда заходит за другую и обе движутся поперек луча нашего зрения — одна направо, а другая налево. Затем та, которая прежде удалялась, начнет к нам приближаться, а та, которая приближалась, будет удаляться. Потом они снова пройдут поперек луча нашего зрения и все начнется сначала.
Когда компоненты двойной звезды движутся так, что одна звезда приближается, а другая удаляется, спектральные линии первой смещаются в сторону фиолетового конца спектра, а линии второй — в сторону красного конца. Когда оба компонента движутся поперек нашего луча зрения, никакого смещения наблюдаться не будет ни у той, ни у другой звезды. Если обе звезды принадлежат к одному и тому же классу, то, пока они движутся поперек луча нашего зрения, их спектральные линии будут совпадать. Но когда одна из них приближается, а другая удаляется, линии будут раздваиваться, потому что одна серия сместится в одном направлении, а другая— в другом. За время одною оборота спектральные линии раздвоятся дважды.
Такое изменение спектральных линии позволяет распознать двойную звезду даже тогда, когда визуально ее компоненты совершенно неразличимы В 1889 г. американский астроном Антония Мори (1866—1952) заметила такое периодическое раздвоение линий в спектре Мицара, одной из звезд в ручке ковша Большой Медведицы. Это была первая спектрально-двойная звезда. Потом их было открыто еще очень много.

Рис. Спектрально-двойные звезды.


В 1904 г. немецкий астроном Иоганн Франц Гартман (1865—1936) изучал спектрально-двойную звезду Дельту Ориона. Он заметил, что во время периодического раздвоения линий одна из них не раздваивалась! Эта световая волна поглощалась чем-то, что не участвовало в движении ни того, ни другого компонента двойной системы. Это мог быть третий компонент с очень большой массой— настолько большой, что центр тяжести всей системы почти совпадал с его собственным центром, и поэтому он был почти неподвижен. Однако если бы этот третий компонент был светящимся, он был бы видим, а если бы он был темным, то его выдали бы периодические затмения, как у Альголя.
Гартман счел гораздо более вероятным, что эта неподвижная линия поглощения вызвана чрезвычайно разреженным газом, присутствующим в пространстве, отделяющем нас от Дельты Ориона. С мнением Гартмана согласились не сразу, но затем стали появляться сообщения других астрономов, подтверждающие его выводы— в частности, следует упомянуть работы американскою астронома русского происхождения Отто Струве (1897—1964). В настоящее время межзвездный газ признан одной из составных частей Галактики и считается, что его общая масса превышает общую массу пыли в Галактике примерно в 50—100 раз.
Неподвижная спектральная линия, впервые замеченная Гартманом, совпадала с линией кальция, а потому представлялось очевидным, что межзвездный газ содержит кальций. Были обнаружены и другие атомы, однако точно определить состав газа с помощью одного только спектрального анализа было невозможно. Наличие газа, который активно поглощает световые волны определенной длины в видимой части спектра (как, например, кальций), может отразиться в спектре, даже если этот газ присутствует в очень малых количествах. Но к 50-м годам стало совершенно ясно, что преобладающей составной частью межзвездного газа является гораздо менее заметный (с точки зрения спектроскопии) водород.
По современной оценке 90% всех атомов Вселенной— это атомы водорода, наиболее простые из всех атомов, и 9% — атомы гелия, самые простые после водородных. На долю всех остальных атомов остается 1%. Короче говоря, соотношение элементов в химическом составе Солнца представляется довольно типичным для всего состава Вселенной.
Если межзвездный газ — это в основном водород и гелий, то из чего состоит пыль? Атомы гелия не выказывают никакой тенденции соединяться в более крупные частицы, а водород образует двухатомные молекулы, которые также не выказывают практически никакой тенденции к дальнейшему объединению. Следовательно, пыль должна образовываться с помощью какого-то более редкого компонента, но не слишком редкого, так как Галактика содержит значительное количество пыли.
Согласно одному из предположений, это должен быть кислород, наиболее распространенный из второстепенных элементов. Атом кислорода легко вступает в соединение с атомом водорода, образуя так называемую гидроксильную группу, и в 1963 г. в межзвездном веществе действительно были обнаружены такие соединения. Атом кислорода, кроме того, может соединяться с двумя атомами водорода, образуя молекулу воды, а молекулы воды легко слипаются между собой. Потому межзвездная пыль, возможно, в значительной мере состоит из кристаллов льда.
Хотя межзвездный газ и пыль очень разрежены, они заполняют колоссальные пространства, и потому общая их масса весьма велика. По некоторым оценкам масса межзвездного вещества Галактики равна массе всех ее звезд, но такая оценка почти наверное завышена. Согласно новейшим определениям, масса межзвездного газа составляет только 2% от массы звезд, но спиральные ветви должны быть гораздо богаче газом, чем ядро Галактики. В спиральных ветвях масса межзвездного вещества может составлять даже 10—15% от массы звезд.
Если бы газ, содержащийся в такой галактике, как наша, весь сгустился, то его даже по самой низкой оценке хватило бы для создания двух миллиардов звезд, а потому нет ничего невозможного в том, что звезды возникают из разреженного межзвездного водорода и сейчас или что некоторые из них возникли от одного до десяти миллионов лет назад и теперь сияют сверхъестественно ярко.
Некоторые другие галактики, возможно, еще богаче сырьем для новых звезд. Концентрация межзвездного газа в Большом Магеллановом Облаке, например, может быть втрое выше, чем в нашей Галактике.
Теперь мы можем объяснить неожиданно малое количество водорода и кажущийся избыток гелия на Солнце, а также и тот факт, что Земля состоит почти исключительно из элементов более сложных, чем гелий. По-видимому, газовое вещество, из которого образовалась солнечная система, уже с самого начала содержало значительные запасы гелия и некоторое количество более сложных атомов.
Итак, возникает вопрос: откуда взялись в межзвездном газе гелий и более сложные элементы?
Можно просто предположить, что в том газе, из которого образовалась наша Галактика, уже с самого начала имелось определенное количество гелия и более сложных атомов. Однако куда соблазнительнее предположение, что вначале он содержал только самые простые атомы — атомы водорода, а все остальные атомы образовались из них. Но, насколько нам известно, условия, при которых становятся возможными те процессы, когда атомы водорода сливаются в другие атомы, существуют только в недрах звезд. Если это так, то каким образом гелий и другие атомы снова попадают в межзвездный газ?
Запомним этот вопрос, а пока рассмотрим дальше возможный путь эволюции звезд.

 
< Пред.   След. >