Температура в недрах Солнца - Вселенная - От плоской Земли до квазаров

Вселенная

От плоской Земли до квазаров
Главная


Земля


Солнечная система


Звезды


Галактика


Размеры Галактики


Другие галактики


Возраст Земли


Энергия Солнца


Типы звезд


Эволюция звезд


Взрывы звезд


Эволюция галактик


Удаляющиеся галактики


Наблюдаемая Вселенная


Начало Вселенной


Бомбардировка частицами


Фотоны большой энергии


Радиоастрономия


Окраины Вселенной



Температура в недрах Солнца

Определение свойств поверхности Солнца было огромным достижением — на первый взгляд оно вообще казалось невозможным. Так насколько же труднее, скажете вы, должно быть изучение недр Солнца.
Однако некоторые выводы о недрах Солнца сделать довольно легко. Например, мы знаем, что поверхность Солнца постоянно излучает в пространство огромное количество тепла, и тем не менее ее температура не меняется. Совершенно очевидно, что это тепло должно поступать изнутри с той же скоростью, с какой оно излучается в пространство, а отсюда следует, что недра Солнца должны быть более горячими, чем его поверхность.
Поскольку поверхность Солнца уже настолько горяча, что на ней превращаются в пар любые известные вещества, и поскольку внутренние области Солнца еще горячее, напрашивается вывод, что все Солнце газообразно, что это просто шар сверхраскаленного газа. Если это так, то можно считать, что астрономам очень повезло, ибо свойства газа установить легче, чем свойства жидкостей и твердых тел.
В 20-х годах XX в. вопросом о внутреннем строении Солнца занялся английский астроном Артур Стенли Эддингтон (1882—1944), исходивший из предположения, что звезды представляют собой газовые шары.
Эддингтон рассуждал так раз Солнце — всего лишь газовый шар, то, если бы на него воздействовала только сила его собственного тяготения, оно стремительно сжалось бы. А поскольку этого не происходит, значит, силу тяготения уравновешивает какая-то другая сила, действие которой направлено изнутри наружу. Такая направленная наружу сила могла возникнуть благодаря стремлению газов расширяться под действием высокой температуры.
Исходя из значений массы Солнца и силы его тяготения, Эддингтон в 1926 г. рассчитал, какие температуры необходимы для того, чтобы уравновешивать силу тяготения на различной глубине под поверхностью Солнца. Он получил потрясающие цифры. Температура в центре Солнца должна была достигать гигантской величины в 15 000 000 °С (Согласно современным расчетам она еще выше: 21 000 000 °С!)
Несмотря на всю поразительность этих результатов, большинство астрономов согласилось с ними. Во-первых, такие температуры были необходимы для того, чтобы могло происходить слияние атомов водорода. Хотя поверхность Солнца намного холоднее, чем требуется для этой реакции, внутренние области, согласно расчетам Эддингтона, оказались, безусловно, достаточно горячими для нее.
Во-вторых, рассуждения Эддингтопа помогали объяснить и некоторые другие явления. Солнце находилось в состоянии чуткого равновесия между силой тяготения, обращенной внутрь, и действием температуры, направленным наружу. А что, если такое состояние равновесия свойственно не всем звездам?

Предположим, что какая то звезда не настолько горяча, чтобы противостоять сжатию под действием силы тяготения. Подобная звезда сжалась бы, и при этом энергия тяготения (как указывал еще Гельмгольц) превратилась бы в тепловую энергию. Внутренняя температура повысилась бы, силы расширения возросли бы и в конце концов уравновесили бы давление, создаваемое силой тяготения. Однако звезда по инерции продолжала бы сжиматься и дальше — но все медленнее и медленнее. К тому времени, когда сжатие, наконец, прекратилось бы, температура уже была бы намного выше той, которая требовалась для уравновешивания силы тяготения, и звезда начала бы расширяться. По мере ее расширения температура понижалась бы и вскоре вновь достигла бы точки равновесия. Однако из-за инерции процесс расширения не остановился бы на этой точке — он постепенно замедлился бы, потом прекратился, и звезда вновь начала бы сжиматься. Этот цикл повторялся бы снова и снова — бесконечно.
Такая звезда пульсировала бы около какого-то положения равновесия подобно качающемуся маятнику или подпрыгивающей пружине. Блеск такой звезды, естественно, регулярно менялся бы, и характер его изменений (при ее размерах и температуре) точно совпал бы с поведением цефеид.
После того как все астрономы пришли к согласию относительно температуры и давления во внутренних областях Солнца, оставалось выяснить процессы, позволявшие водороду при этих условиях превращаться в гелий со скоростью, которая была бы достаточна для объяснения общего количества солнечного излучения. В 1939 г. американский физик, немец по происхождению, Ганс Альбрехт Бете (род. в 1906 г.) сумел разработать подходящий цикл ядерных реакций. Скорость их протекания в условиях, царящих внутри Солнца (согласно теоретическим расчетам и экспериментальным данным, полученным в земных лабораториях), вполне отвечала этим требованиям.
Таким образом, вопрос об источнике солнечной энергии, поставленный Гельмгольцем в 40-х годах XIX в, Беге окончательно разрешил почти 100 лет спустя.

А вместе с этим была также установлена возможная длительность жизни Солнца 100 миллиардов лет.
Однако поиски данных, подтверждавших наличие сверхвысокой температуры внутри Солнца, имели и неожиданное побочное следствие была опровергнута планетезимальная гипотеза происхождения солнечной системы.
Полагать, что от Солнца отделилась какая-то часть его вещества, которое затем сгустилось в планеты, можно было до тех пор, пока температура солнечного вещества оценивалась в несколько тысяч градусов. Но температура в несколько миллионов градусов — это совсем иное дело.
В 1939 г. американский астроном Лаймен Спитцер младший (род. в 1914 г.) убедительно доказал, что
подобное сверхгорячее вещество не могло бы сгуститься в планеты, а, наоборот, быстро расширилось бы в газовую туманность, окружающую Солнце, и осталось бы туманностью.
Поэтому астрономам вновь пришлось вернуться к разрешению проблемы образования планет из относительно холодного вещества. Им снова пришлось думать о сжимающихся туманностях старого лапласовского типа. Однако в XX в уже было известно очень многое о том, как должна была бы вести себя такая туманность, и об электрических и магнитных силах, воздействию которых она подвергалась бы наряду с воздействием сил тяготения.
В 1943 г. немецкий астроном Карл Фридрих Вайцзеккер (род в 1912 г.) высказал предположение, что туманность, из которой возникла солнечная система, не вращалась как единое целое. Наоборот, в ее наружных слоях, по его мнению, должны были образоваться вихревые движения с меньшими вихрями внутри больших. Там, где встречались бы соседние вихри, происходило бы столкновение частиц, слияние их во все более крупные частицы, и впоследствии там сформировались бы планеты. Таким способом Вайцзеккер пытался ответить на те вопросы, на которые пробовал ответить Лаплас, а сверх того, еще и объяснить закономерность в расположении планетных орбит, распределение момента количества движения и т. д.
Теория Вайцзеккера была встречена восторженно, но ее частности вызвали большие споры. Они еще продолжаются, и многие астрономы выдвинули свои собственные версии, но ни одна из них еще не получила всеобщего признания. Впрочем, английский астроном Фред Хойл (род в 1915 г.) недавно предложил механизм образования планет, связанный с магнитным полем Солнца, и эта теория завоевала немалую популярность.
Как бы то ни было, астрономы единодушно сходятся на том, что вся солнечная система — и Солнце и планеты— образовалась в результате одного общего процесса Другими словами, если Земля в ее нынешней форме существует 4,7 миллиарда лет, то мы можем считать, что и вся солнечная система (включая Солнце) в ее нынешней форме существует 4,7 миллиарда лет).

Рис. Гипотеза Вайцзеккера

 
След. >